14,828 research outputs found

    Physics Beyond SM at RHIC with Polarized Protons

    Get PDF
    The capabilities of RHIC with polarized protons to test the Lorentz structure of electroweak interactions and also the properties of MSSM Higgs, should it be discovered, are discussed.Comment: Report to the 14th International Symposium on Spin Physics, October 16-21, 2000, RCNP, Osaka University, Osaka, Japan. To be published in the Proceedings, 6 page

    Quantum dynamics of non-relativistic particles and isometric embeddings

    Get PDF
    It is considered, in the framework of constrained systems, the quantum dynamics of non-relativistic particles moving on a d-dimensional Riemannian manifold M isometrically embedded in Rd+nR^{d+n}. This generalizes recent investigations where M has been assumed to be a hypersurface of Rd+1R^{d+1}. We show, contrary to recent claims, that constrained systems theory does not contribute to the elimination of the ambiguities present in the canonical and path integral formulations of the problem. These discrepancies with recent works are discussed.Comment: Revtex, 14 page

    Equivalence between Schwinger and Dirac schemes of quantization

    Full text link
    This paper introduces the modified version of Schwinger's quantization method, in which the information on constraints and the choice of gauge conditions are included implicitly in the choice of variations used in quantization scheme. A proof of equivalence between Schwinger- and Dirac-methods for constraint systems is given.Comment: 12pages, No figures, Latex, The proof is improved and one reference is adde

    High pressure sintering of non-oxide materials

    Get PDF
    Pure materials of AIN, alpha-Si3N4 and TiC, without additives were sintered at 800 C to 1400 C under the pressures of 30 kbar and 50 kbar for 0.5 hours. The maximum density of sintered bodies for the cited materials was nearly 100% for AIN, 98% for TiC and 96% for alpha-Si3N4

    Leaf area index and topographical effects on turburlent diffusion in a deciduous forest

    Get PDF
    In order to investigate turbulent diffusion in a deciduous forest canopy, wind velocity measurements were conducted from late autumn of 2009 to early spring of 2010, using an observation tower 20 m in height located in the campus of Kanazawa University. Four sonic anemometers mounted on the tower recorded the average wind velocities and temperatures, as well as their fluctuations, at four different heights simultaneously. Two different types of data sets were selected, in which the wind velocities, wind bearings and atmospheric stabilities were all similar, but the Leaf Area Indexes (LAI's) were different. Vertical profiles of average wind velocities were found to have an approximately exponential profile in each case. The characteristic length scales of turbulence were evaluated by both von Karman's method and the integral time scale deduced from the autocorrelation from time-series analyses. Both methods produced comparable values of eddy diffusivity for the cases with some foliage during late autumn, but some discrepancy in the upper canopy layer was observed when the trees did not have their leaves in early spring. It was also found that the eddy diffusivities generally take greater values at higher positions, where the wind speeds are large. Anisotropy of eddy diffusivities between the vertical and horizontal components was also observed, particularly in the cases when the canopy does not have leaves, when the horizontal eddy diffusivities are generally larger than the vertical ones. On the other hand, the anisotropy is less visible when the trees have some foliage during autumn. The effects of topography on the turbulent diffusion were also investigated, including evaluation of the non-zero time-averaged vertical wind velocities. The results show that the effects are marginal for both cases, and can be neglected as far as diffusion in the canopy is concerned

    Polymers in Curved Boxes

    Full text link
    We apply results derived in other contexts for the spectrum of the Laplace operator in curved geometries to the study of an ideal polymer chain confined to a spherical annulus in arbitrary space dimension D and conclude that the free energy compared to its value for an uncurved box of the same thickness and volume, is lower when D<3D < 3, stays the same when D=3D = 3, and is higher when \mbox{D>3D > 3}. Thus confining an ideal polymer chain to a cylindrical shell, lowers the effective bending elasticity of the walls, and might induce spontaneous symmetry breaking, i.e. bending. (Actually, the above mentioned results show that {\em {any}} shell in D=3D = 3 induces this effect, except for a spherical shell). We compute the contribution of this effect to the bending rigidities in the Helfrich free energy expression.Comment: 20 pages RevTeX, epsf; 4 figures; submitted to Macromoledule

    The Role of Selenocysteine Lyase in Pancreatic Islet Physiology and its Sex-Specific Regulation of Energy Metabolism.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017
    corecore